Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1917288

ABSTRACT

Nucleic acid amplification diagnostics offer outstanding features of sensitivity and specificity. However, they still lack speed and robustness, require extensive infrastructure, and are neither affordable nor user-friendly. Thus, they have not been extensively applied in point-of-care diagnostics, particularly in low-resource settings. In this work, we have combined the loop-mediated isothermal amplification (LAMP) technology with a handheld portable device (SMART-LAMP) developed to perform real-time isothermal nucleic acid amplification reactions, based on simple colorimetric measurements, all of which are Bluetooth-controlled by a dedicated smartphone app. We have validated its diagnostic utility regarding different infectious diseases, including Schistosomiasis, Strongyloidiasis, and COVID-19, and analyzed clinical samples from suspected COVID-19 patients. Finally, we have proved that the combination of long-term stabilized LAMP master mixes, stored and transported at room temperature with our developed SMART-LAMP device, provides an improvement towards true point-of-care diagnosis of infectious diseases in settings with limited infrastructure. Our proposal could be easily adapted to the diagnosis of other infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Nucleic Acids , COVID-19/diagnosis , Colorimetry , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Systems , Sensitivity and Specificity , Smartphone
2.
J Clin Med ; 11(1)2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1580639

ABSTRACT

Detection of SARS-CoV-2 is routinely performed in naso/oropharyngeal swabs samples from patients via RT-qPCR. The RT-LAMP technology has also been used for viral RNA detection in respiratory specimens with both high sensitivity and specificity. Recently, we developed a novel RT-LAMP test for SARS-CoV-2 RNA detection in nasopharyngeal swab specimens (named, N15-RT-LAMP) that can be performed as a single-tube colorimetric method, in a real-time platform, and as dry-LAMP. To date, there has been very little success in detecting SARS-CoV-2 RNA in urine by RT-qPCR, and the information regarding urine viral excretion is still scarce and not comprehensive. Here, we tested our N15-RT-LAMP on the urine of 300 patients admitted to the Hospital of Salamanca, Spain with clinical suspicion of COVID-19, who had a nasopharyngeal swab RT-qPCR-positive (n = 100), negative (n = 100), and positive with disease recovery (n = 100) result. The positive group was also tested by RT-qPCR for comparison to N15-RT-LAMP. Only a 4% positivity rate was found in the positive group via colorimetric N15-RT-LAMP and 2% via RT-qPCR. Our results are consistent with those obtained in other studies that the presence of SARS-CoV-2 RNA in urine is a very rare finding. The absence of SARS-CoV-2 RNA in urine in the recovered patients might suggest that the urinary route is very rarely used for viral particle clearance.

SELECTION OF CITATIONS
SEARCH DETAIL